ADVANCED ALGORITHMS

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY::PUTTUR (AUTONOMOUS) <u>OUESTION BANK (DESCRIPTIVE)</u>

Subject with Code: ADVANCED ALGORITHMS (19CS5003) Course & Branch: M.Tech - CSE

Year & Sem: I M.Tech & II Sem

<u>UNIT-I</u>

SORTING & GRAPHS

1. What is Topological sorting? Illustrate topological sorting with algorithm	[12M]
2. Discuss any two exchange sorting techniques with algorithm	[12M]
3. Differentiate graph traversing techniques with algorithm	[12M]
4. What is minimum cost spanning tree? Write algorithm for kruskals technique with	
Illustration	[12M]
5. write sequence of steps to find shortest path using Dikstra's technique with an example [12M]	
6. Illustrate below graph traversing techniques with algorithm	
a)Breadth first search	[6M]
b)Depth first search	[6M]
7. Narrate sorting techniques using "divide and conquer approach	[12M]
8. Describe about Asysmptotic notations	[12M]
9. Write about following	
a)Diminishing increment sort	[6M]
b)sorting using linked list	[6M]
10. Compare and Illustrate different "minimum cost spanning tree" finding algorithms	[12M]

Regulation: R19

<u>UNIT-II</u>

MATROIDS & GRAPH MATCHING

1.What is matroid? Illustrate any two greedy algorithm techniques	[12M]
2.Write algorithm to compute maximum weight and minimal independent set	[12M]
3.Illustrate prims technique with algorithm	[12M]
4. Write an algorithm to find out maximum matching in graphs	[12M]
5. What is augmenting path? How it is computed with Edmonds Blossom Algorithm	[12M]
6.Narrate few applications of spanning trees with example	[12M]
7.write about following	
a) warshall's technique	[6M]
b)Graph colouring problem	[6M]
8. Narrate following in detail	
a)Huffman coding and compression	[6M]
b)Travelling sales person problem	[6M]
9. Illustrate any three graph applications with algorithms	[12M]
10.Discuss the difference between following	
a)Chromatic numbers in scheduling	[6M]
b)Directed acyclic graphs in planning activities	[6M]

QUESTION BANK 2019

<u>UNIT – III</u>

FLOW NETWORKS & MATRIX

1.Explain following	
---------------------	--

a)Maxflow-mincut theorem	[6M]	
b)Ford-Fulkerson Method	[6M]	
2. Narrate Edmond-Karp maximum-flow algorithm	[12M]	
3. Illustrate strassen's algorithm with an example.	[12M]	
4. Expalin how you use "divide and conquer" in matrix computations	[12M]	
5.Describe the relation between time complexities of basic matrix operations	[12M]	
6.Illustarate LUP-Decomposition in detail	[12M]	
7.Differentiate following techniques		
a) maximum flows and minimum cuts in a graph	[6M]	
b) Max flow equals min cut	[6M]	
8. Narrate following in nut shell		
a) pre-flow push maximum algorithm	[6M]	
b)Bipatite matching problem	[6M]	
9. Discuss in detail about "Airlines scheduling" algorithm		[12M]
10.Pictorially narrate below techniques		
a)Image segmentation	[6M]	
b)Base ball elimination	[6M]	

ADVANCED ALGORITHMS

QUESTION BANK 2019

<u>UNIT – IV</u>

GRAPHS & DFT

1. Explain How to find out path matrix with warshall algorithm	[12M]
2. Differentiate Floyd and warshall algorithms	[12M]
3. Write algorithms for following	
a)Travelling sales person problem	[6M]
b)Towers of Hanoi	[6M]
4. Explain interpolation problem in detail	[12M]
5. Narrate conversion between Base and Modulo Representation	[12M]
6. Narrate Schonhage-Strassen Integer Multiplication algorithm	[12M]
7.Explain following	
a)Chinese Reminder Theorem	[6M]
b)Fast Fourier theorem	[6M]
8. Compare and contrast following	
a) The FFT using bit operations	[6M]
b) Products of polynomials	[6M]
9. Illustrate polynomial multiplication and division algorithms	[12M]
10.Define finite Automata? Discuss Chinese remaindering and interpolation	
of polynomials	[12M]

ADVANCED ALGORITHMS

QUESTION BANK 2019

<u>UNIT – V</u>

LINEAR PROGRAMMING

1. Illustrate Geometry of the feasibility region and Simplex algorithm	[12M]
2. Describe proof of NP-hardness and NP-completeness	[12M]
3. Discuss any Randomized algorithms	[12M]
4. Explain any 2 Approximation algorithms	[12M]
5. Write in detail about Interior point Method	[12M]
6. Illustarte advanced number theoretic Algorithm	[12M]
7.Describe following	
a) Polynomial-space-bounded problems	[6M]
b) Nondeterministic Turing machines	[6M]
8. Differentiate following	
a)row-oriented lower bound on multiplications b)column-oriented lower bound on multiplications	[6M] [6M]
9.Narrate how we can implement Dictionaries randomly with algorithm	[12M]
10.Copare "Randomized catching" and "chernoff bounds" in detail	[12M]

ADVANCED ALGORITHMS